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Abstract

The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body
placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.1, 1 and 50. The
dimensionless temperature difference ratios considered are 0.0, 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural con-
vection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from 103 to 106.
Multi-domain technique is used to handle square-shaped heat-generating conducting body. The fluid flow, heat transfer and time-
and surface-averaged Nusselt number are investigated for various ranges of Rayleigh number, thermal conductivity ratio and dimension-
less temperature difference ratio. The results for the case of conducting body with heat generation are also compared to those without
heat generation to see the effects of heat generation from the conducting body on the fluid flow and heat transfer in the enclosure.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Rayleigh–Bénard convection in a horizontal layer of
fluid confined between two parallel plates, with the bottom
plate heated and the top one cooled, has been well studied
for over a century. It has been well established that for the
isothermal boundary condition the horizontal layer of fluid
becomes unstable above a Rayleigh number of 1708 and
convective motion sets in the form of steady convective
rolls of aspect ratio (width to height) of about 2 [1]. With
increasing Rayleigh number the flow undergoes a sequence
of instabilities and eventually transitions to a turbulent
state above a Rayleigh number of about 107 [2,3].

The geometries that arise in engineering applications,
however, are more complicate than a simple horizontal
layer of convecting fluid. Ha et al. [4]. considered the prob-
lem of natural convection in a square enclosure with
isothermal top and bottom boundaries and various condi-
tions of thermal boundary of interior body, and also, an
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aspect ratio effect of given enclosure with equi-spaced array
of bodies was investigated by Lee et al. [5], in which they
concluded that the transition of flow from quasi-steady
up to unsteady convection depends on the presence of
bodies and aspect ratio effect of the cell.

However, a body considered was not calculated but trea-
ted a rigid wall. In order to consider interior body, many
numerical studies have conducted for couples of decades.
One of the earliest systematic numerical investigations of
this problem was by House et al. [6] who considered the
influence of a centered conducting body on natural convec-
tion within an enclosure. For given Ra and Pr, an existence
of conducting body with thermal conductivity ratio less
than unity makes heat transfer enhanced. Deng and Tang
[7] defined a heat function to visualize the heat and fluid
flow in an air filled square cavity over a wide range of
Ra = 103–106, and those for conjugate natural convec-
tion/heat conduction where the conduction effect of solid
body on heat transfer is studied. Moreover, a phenomenon
of free convection with another heat source is quite inter-
esting and has been studied vigorously. Oh et al. [8] inves-
tigated the steady natural convection processes when a
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Fig. 1. Schematics of the system.

Nomenclature

A* area ratio (= W2/L2)
Cp constant pressure specific heat
g gravity
k dimensionless thermal conductivity (= ks/kf)
L length of the enclosure
n vector normal to surface
Nu local Nusselt number
Nu surface-averaged Nusselt number
hNui time- and surface-averaged Nusselt number
p dimensionless pressure
Pr Prandtl number
_q heat generation per unit surface
Ra Rayleigh number
t dimensionless time
t* dimensional time
tp period of time integration
u dimensionless velocity
u* dimensional velocity

x dimensionless coordinate vector
x* dimensional i-directional coordinate
a dimensionless thermal diffusivity (= as/af)
b thermal expansion coefficient
q dimensionless density
Cp dimensionless specific heat
DT* temperature-difference ratio ð¼ ð _qW 2=kfÞ=ðT h�

T cÞÞ
mf kinematic viscosity of fluid
h dimensionless temperature

Subscripts/superscripts

body body
c cold
f fluid
h hot
p period
s solid
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temperature difference exists across the enclosure and, at
the same time, a conducting body generates heat within
the enclosure. Under this situation, the flow inside the
enclosure is driven by two temperature differences: a tem-
perature difference across the enclosure and a temperature
difference caused by heat source. A ratio of these two tem-
perature differences is a very important factor to decide the
heat transfer and flow characteristics of the enclosure. They
investigated the effects of Rayleigh numbers and tempera-
ture difference ratio on variations of streamlines, isotherms,
heat lines and the averaged Nusselt numbers on the hot and
cold walls. Ha and Jung [9] conducted a comprehensive
numerical study to investigate three-dimensional steady,
conjugate heat transfer of natural convection and conduc-
tion in a vertical cubic enclosure within which a centered,
cubic, heat-conducting body generates heat. The presence
of a cubic conducting body in a cubic enclosure results in
a larger variation of the local Nusselt number at the hot
and cold walls in the z-direction.

However, there is little information about natural con-
vection processes when a heat-conducting body exists
within a horizontal layer of fluid confined between the
hot bottom and cold top walls. The horizontal enclosure
with heat-generating body can be applied in many engi-
neering/scientific fields such as solar energy collection sys-
tem, cooling of nuclear power system, cooling of heat-
generating components in the electrical industry and the
flows in rooms due to thermal energy sources. We consider
a horizontal layer of fluid, heated from below and cooled
from above, with a heat-generating conducting square
body at the center of the layer. Rayleigh number varies
from 103 up to 106. In order to consider the effect of ther-
mal conductivity ratio between solid body and fluid layer,
we have chosen the value to be 0.1, 1 and 50. The fluid flow,
heat transfer and time- and surface-averaged Nusselt num-
ber are investigated for various ranges of Rayleigh number
and thermal conductivity ratio. We considered four differ-
ent levels of heat generation of interior body: 0.0 (no heat
generation), 0.25, 2.5 and 25. The results with heat genera-
tion are compared to those without heat generation to see
the effects of heat generation on the fluid flow and heat
transfer in the enclosure.

2. Numerical methodology

A schematics of the system considered in present paper is
shown in Fig. 1. The system consists of a square enclosure
with sides of length L, within which another square body
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with sides of length W, is centered and has a thermal con-
ductivity of ks and a heat generation per unit volume of _q.
The bottom wall is kept at a constant high temperature of
Th, whereas the top wall is kept at a constant low tempera-
ture of Tc. The left and right side walls are assumed to be
insulated. In this study, we assume that the radiation effects
can be taken to be negligible. The fluid properties are also
assumed to be constant, except for the density in the buoy-
ancy term, which follows the Boussinesq approximation.
The gravitational acceleration acts in the negative y-direc-
tion. Thus, in the present study, we observe the fluid flow
and thermal fields for the natural convection in an enclosure
with heat-generating conducting body at the center.

We solve the continuity, Navier–Stokes and energy
equations in their non-dimensional forms defined as

r � u ¼ 0 ð1aÞ
ou

ot
þ u � ru ¼ �rp þ Prr2uþ Ra Prhfk2 ð1bÞ

ohf

ot
þ u � rhf ¼ r2hf ð1cÞ

ohs

ot
¼ ar2hs þ

DT
ðqCpÞA

ð1dÞ

The dimensionless variables in the above equations are de-
fined as

t ¼ t�af

L2
; x ¼ x�

L
; u ¼ u�L

af

; P ¼ P �L2

qfa
2
f

; h ¼ T � T c

T h � T c

ð2Þ
In the above equations, the superscript * represents the
dimensional variables, and dimensionless parameters are
defined as

Pr ¼ m
af

; Ra ¼ gbL3ðT h � T cÞ
maf

; DT ¼ _qW 2=kf

T H � T C
;

a ¼ as

af

; qCp ¼
ðqCpÞs
ðqCpÞf

; A ¼ W 2

L2
ð3Þ

In the simulations to be reported here the area ratio, A is 1/9
and the Prandtl number, Pr is taken to be 0.7 corresponding
to air. The Rayleigh number, Ra, and the temperature differ-
ence ratio, DT, are varied over the range of 103–106 and
0–25, respectively. The values of dimensionless thermal
diffusivity, a, for different values of k are 0.001 for k = 0.1,
1 for k = 1 and 0.05 for k = 50, respectively.

For the boundary conditions, the velocities are set to
zero for all solid walls. The temperature boundary condi-
tions and the conditions at the fluid/body interfaces are
as follows;

At x ¼ 0 and 1;
oh
ox
¼ 0 ð4aÞ

At y ¼ 0; h ¼ 1 ð4bÞ
At y ¼ 0; h ¼ 0 ð4cÞ

At fluid/body interface; hs ¼ h and
oh
on
¼ k

ohs

on
ð4dÞ
where k(= ks/kf) is thermal conductivity ratio between solid
body and fluid and n is a vector normal to solid surface. We
considered different k values of 0, 0.1, 1 and 50 in the pres-
ent calculation.

A spectral multi-domain methodology is used for the
spatial discretization along the x- and y-directions [10]. In
this technique the overall computational domain is subdi-
vided into a number of smaller rectangular subdomains.
Within each subdomain a local spectral Chebyshev discret-
ization is defined [11]. Fig. 1 shows the computational
geometry involving 9 subdomains in the x–y plane, with
each subdomain resolved by 31 · 31 points. The grid points
are the Gauss–Lobatto points corresponding to Chebyshev
expansion within each subdomain and are therefore non-
uniformly distributed. Grid independence of the solution
has been confirmed with additional simulations on much
finer grids up to 51 · 51 points [5], and also, we have
conducted grid resolution test between coarse and fine grid
distribution for similar geometry [12] and obtained grid
independency for this study.

A two-step time-split scheme is used to advance the flow
field. First, the velocity is advanced from time level ‘n’ to an
intermediate level by solving the advection–diffusion
equation

u� � un

Dt
¼ Pr

2
r2u� þ r2un

� �

þ 23

12
NLn �

16

12
NLn�1 þ

5

12
NLn�2

� �
ð5aÞ

where u* is the intermediate level velocity and NL repre-
sents the non-linear and buoyancy terms defined as

NL ¼ u � ru� RaPrhf k2 ð5bÞ
In the advection–diffusion step, the non-linear and buoy-
ancy terms are treated explicitly using the third-order
Adams–Bashforth scheme. The diffusion terms are treated
implicitly using the Crank–Nicholson scheme as given
below:

r2u� u

Dt
� 2

Pr

����
����
�

¼ 2

Pr
23

12
NLn �

16

12
NLn�1 þ

5

12
NLn�2

� �
� u

Dt
� 2

Pr
�r2u

����
����
n

ð5cÞ
The solution of Eq. (5c) determines the velocity u* at the
intermediate time step. Then a Poisson equation for pres-
sure is solved fully implicitly as given below:

r2pnþ1 ¼
1

Dt
r � u� ð5dÞ

The final divergence-free velocity field at ‘n + 1’ is obtained
with the following pressure-correction step

unþ1 ¼ u� � Dt rpnþ1 ð5eÞ
The above correction guarantees zero divergence at all the
points where the pressure Poisson equation (5d) is satisfied.
After obtaining the velocity field, the temperature field is
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advanced in a similar manner with the third-order Adams–
Bashforth scheme for the advection term (denoted below as
AD) and the Crank–Nicholson scheme for the diffusion
term

hnþ1 � hn

Dt
¼ 1

2
r2hnþ1 þr2hn

� �

þ 23

12
ADn �

16

12
ADn�1 þ

5

12
ADn�2

� �
ð5fÞ

where AL represents the non-linear terms defined as

AL ¼ u � rh ð5gÞ
The above numerical scheme thus requires the solution of a
Helmholtz equation for each component of the intermedi-
ate velocity (5a), a Poisson equation for pressure (5d) and a
Helmholtz equation for the temperature field (5f). In the
context of the present spectral multi-domain technique
these elliptic equations are solved using a patching tech-
nique [11]. The discretized version of the elliptic equations
is solved at the interior grid points and at the boundary
points appropriate boundary conditions are enforced. At
the interface grid points along the interior interface of the
subdomains the strong form of the patching condition that
requires C1 continuity (continuity of the function as well of
the normal derivative) is enforced. The resulting discretized
linear system lends itself to solution through influence
matrix technique.

The influence matrix technique can be briefly explained
as follows [13]. First, as a preprocessing step an influence
matrix is computed, inverted and stored for repeated use
each time step. Each column of the influence matrix is
formed by the gradient mismatch at all the interface points
resulting from a unit Dirichlet condition placed at one of
the interface points. The entire influence matrix is assem-
bled by unit forcing placed at each of the interface points,
one at a time. At each time step, as the first pass the elliptic
(Helmholtz or Poisson) equations are solved independently
within each subdomain with zero Dirichlet boundary condi-
tion at the interface points. The resulting gradient mismatch
in conjunction with the inverse of the influence matrix is
used to obtain the correct interface value that will result
in C1 continuity. The elliptic equation is solved once again
with the appropriate interface value to get the final solution.
We use singular value decomposition in solving the influ-
ence matrix during the pressure Poisson equation. In this
technique the mean pressure (averaged over the volume) is
set to zero at each time and any other spurious pressure
modes, which might arise from the space of polynomials
used for pressure representation, are nullified as well.

At the solid boundaries the following boundary condi-
tions are applied for the intermediate velocity

u�jwall � n ¼ 0 and u�jwall � t ¼
3

2
rpn �

1

2
rpn�1

� �
wall

� t

ð6Þ
where n is the unit vector normal to the wall and t repre-
sents the two orthogonal unit vectors tangential to the wall.
In the context of the time-split scheme, the appropriate
pressure boundary condition to be applied at the solid
boundaries is the homogeneous Neumann condition
($p Æn = 0). The above boundary conditions along with
(5e) exactly satisfy the no-penetration condition at the solid
walls and maintain the tangential slip velocity to be nearly
zero at O(Dt3).

Owing to viscous scaling the flow velocity is a strong
function of Rayleigh number. Correspondingly the time
step employed in the simulations are very small and depen-
dent on the Rayleigh number, with Dt ranging from 10�3 to
10�6 as Ra increases from 103 to 106. The simulations are
typically run on a PC cluster and each high Rayleigh num-
ber simulation at Ra = 106 takes about 4 h of CPU time for
the unit cell.

Once the velocity and temperature fields are obtained,
the local, surface-averaged, time-averaged, and time-and-
surface-averaged Nusselt number are defined as

Nu ¼ oh
on

����
wall

; Nu ¼ 1

W

Z W

0

NudS; hNui ¼ 1

tp

Z tp

0

Nu dt;

hNui ¼ 1

tp

Z tp

0

Nudt ð7Þ

where n is the normal direction to the walls, W is the hori-
zontal extent of the computational domain and tp is the per-
iod of time integration. The above quantities are separately
computed for the cold top and the hot bottom walls. The
present multi-domain spectral methodology and the com-
puter code used here have been thoroughly validated by
comparing results with those of de Vahl Davis [14] and
House et al. [6] for the case of a vertical enclosure and with
those of Lipps [2] for the case of a horizontal enclosure. For
Rayleigh numbers of 103, 104, 105 and 106 the benchmark
results on surface-averaged Nusselt number obtained by
de Vahl Davis [14] are 1.118, 2.243, 4.519 and 8.800. The
corresponding results obtained with the present code using
9 subdomains with 31 · 31 grid points resolving each sub-
domain are, respectively, 1.118, 2.246, 4.525 and 8.821,
yielding less than 0.25% difference, even at the highest Ray-
leigh number considered. The problem of natural convec-
tion in a vertical enclosure with an interior conducting
body studied by House et al. [6] was also considered with
the present code. The Nusselt number at the hot wall ob-
tained by House et al. [6] for Ra = 105with two different
body-to-fluid thermal conductivity ratios of 0.2 and 5.0
are, respectively, 4.324 and 4.624, for a dimensionless body
size of 1/2. The corresponding results obtained with the
present code using 9 subdomains with 31x31 grid points
resolving each subdomains are 4.324 and 4.631. Again the
errors are less than 0.15%.

3. Results and discussion

3.1. k = 0.1

Fig. 2 shows time-averaged isotherms and streamlines
for different values of DT and Rayleigh numbers when



Fig. 2. Time-averaged isotherms and streamlines for different values of DT and Rayleigh number when k = 0.1.
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k = 0.1. Fig. 3 shows the corresponding surface-averaged
Nusselt numbers at hot bottom and cold top walls as a
function of time. When k = 0.1, the thermal conductivity
of fluid is ten times larger than that of heat generating con-
ducting body. The value of maximum temperature, hmax, in
the enclosure increases with increasing DT and decreases
slightly with increasing Rayleigh number.

3.1.1. Ra = 103

When Ra = 103, heat transfer in the enclosure is mainly
governed by the conduction mode. When DT = 0 corre-
sponding to the case with no heat generation in the con-
ducting body, the thermal gradient around the top wall is
the same as that around the bottom wall and as a result
the heat transfer rate from the hot bottom wall to the fluid
is also the same as that from the fluid to the cold top wall.
When DT 5 0, the temperature in the conducting body
increases and heat is transferred from the conducting body
to the fluid, due to heat generation from the conducting
body.

When DT = 0.25, isotherms move upwards due to heat
transfer from the body, the thermal gradient at the top wall
becomes larger than that at the bottom wall and as a result
the amount of heat transferred from the fluid to the top
cold wall is larger than that from the bottom hot wall to
the fluid, compared to almost same thermal gradients and
heat transfer rates at the top and bottom walls when
DT = 0. The maximum temperature at DT = 0.25 is about
hmax � 0.88, which is less than the bottom hot wall temper-
ature of h = 1.

When DT is increased to 2.5, the temperature in the con-
ducting body becomes larger than the hot wall temperature
with hmax � 2.94 and the temperature of fluid around the
bottom hot wall is close to the hot wall temperature. Thus
the thermal gradient at the top wall and heat transfer rates
from the fluid to the top wall increase more with increasing
DT from 0.25 to 2.5. However, the thermal gradient around
the bottom wall becomes very small and heat transfer rate
approaches to the value of zero.

When DT is increased further to 25, the temperature in
the conducting body keeps increasing with hmax � 24.7
and the temperature of fluid is larger than the bottom
hot wall temperature (h = 1). As a result heat at the bottom
wall for DT = 25 is transferred from the fluid to the hot
wall, which is the opposite direction compared to the cases
of DT = 0, 0.25 and 2.5. This result shows that heat transfer
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Fig. 3. Surface-averaged Nusselt number at the bottom hot and top cold walls as a function of time for different values of DT and Rayleigh number when
k = 0.1.
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for DT = 0 is governed by the temperature difference
between the hot and cold wall temperatures, whereas that
for DT = 25 is governed by heat generation from the con-
ducting body.

3.1.2. Ra = 104

When Ra = 104, we can observe streamlines and
isotherms circulating around the body due to the effect of
convection, compared to the pure conduction mode when
Ra = 103. When DT = 0 and 0.25, streamlines and their
corresponding isotherms circulate around the conducting
body in the counterclockwise direction, because the con-
vective heat transfer is governed by the temperature differ-
ence between the hot bottom and cold top walls. Because
the amount of heat generation from the body is not large
when DT = 0.25, the distribution of isotherms for DT =
0.25 is generally similar to that for DT = 0, except the small
difference around the conducting body.
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If DT increases to 2.5, the effect of heat generation from
the conducting body starts to work. The upwelling flow
caused by heat generation and the counter-clockwisely cir-
culating flow caused by the temperature difference between
the top and bottom walls have the subtracted effect in the
right channel and added effect in the left channel. As a
result, when DT = 2.5, isotherms in the left channel circu-
late further in the counter-clockwise direction whereas
the circulation of isotherms in the right channel to the
counter-clockwise direction is hindered, resulting in the
denser thermal gradient around the top wall and smaller
one around the bottom wall, compared to the distribution
of isotherms and their gradient when DT = 0 and 0.25.

When DT increases further to 25, the convective heat
transfer in the enclosure is governed by heat generation
from the conducting body and the temperature of fluid
around the center is higher than that around the adiabatic
side walls at the same elevation due to the strong effect of
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heat generation. As a result we can observe the upwelling
flow in the core region and the downwelling flow in the
outer vertical adiabatic walls, resulting in the formation
of a pair of vortices in the enclosure at DT = 25, compared
to the formation of a single cell of vortices when DT = 0,
0.25 and 2.5. Because the temperature of fluid in the enclo-
sure is higher than the bottom hot wall temperature at
DT = 25, heat is transferred from the fluid to the bottom
wall, whose direction is opposite to the direction of heat
transfer for the cases of DT = 0, 0.25 and 2.5.

3.1.3. Ra = 105

When Ra = 105, because the velocity magnitude caused
by the temperature difference between the bottom hot and
top cold walls becomes larger than that when Ra = 104, the
thickness of the thermal boundary layer around walls
becomes thinner and thermal gradient becomes larger gen-
erally than those when Ra = 104, for all different values of
DT considered.

When DT = 0 and 0.25 for Ra = 105, the fluid flow and
heat transfer are mainly governed by the temperature dif-
ference between the bottom hot and top cold walls, similar
to those for Ra = 104. Thus, when DT = 0 and 0.25 for
Ra = 105, the main flow circulates in the counter-clockwise
direction around the conducting body with small second-
ary vortices formed on the right top and left bottom cor-
ners and the corresponding isotherms also circulate to the
same direction by following the flow field, which is similar
to the case of Ra = 104 for the same DT. When Ra = 105,
isotherms for DT = 0.25 have similar shapes to those for
DT = 0 and the small difference is observed around the
conducting body.

When DT = 2.5, the effects of both upwelling flow
caused by heat generation and counter-clockwisely circu-
lating flow caused by the temperature difference between
the top and bottom walls on the distribution of isotherms
and streamlines work together in the enclosure for both
cases of Ra = 104 and 105. However, because the effect of
counter-clockwisely circulating flow caused by the bottom
and top wall temperature difference at Ra = 105 is larger
than that at Ra = 104 for the same value of DT = 2.5, the
isotherms for Ra = 105 rotate more in the counter-clock-
wise direction than those for Ra = 104. The size of second-
ary vortices at the right top corner for DT = 2.5 becomes
much bigger than that for DT = 0 and 0.25. The size of sec-
ondary vortices at the left bottom corner for DT = 2.5
becomes slightly smaller compared to that for DT = 0
and 0.25. We can also observe the tertiary vortices which
are circulating in the clockwise direction and formed at
the left side of conducting body.

When DT increases further to 25 at Ra = 105, the ther-
mal fields do not show final steady state but unsteady fash-
ion as shown in Fig. 3(d). Thus isotherms and streamlines
shown in Fig. 2(d) for Ra = 105 at DT = 25 are time-aver-
aged temperature and velocity fields. When DT = 25,
because of much stronger effect of heat generation from
the conducting body at Ra = 105, we can observe a pair
of vortices formed in the enclosure, similar to the case of
Ra = 104.

3.1.4. Ra = 106

When Ra = 106, the velocity magnitude caused by the
temperature difference between the bottom hot and top
cold walls increases more than that when Ra = 105. Thus,
when DT = 0 and 0.25 for Ra = 106, isotherms rotate more
to the counter-clockwise direction, the thickness of thermal
boundary layer on the walls becomes much thinner, and
the size of secondary vortices formed on the right top
and left bottom corners becomes larger, compared to
those when Ra = 105 for the same values of DT. We can
observe the small tertiary clockwise vortices formed around
the conducting body inside the main counter-clockwise
vortices.

When DT = 0 and 0.25 for Ra = 106, the fluid flow and
temperature fields reach the steady state. However, when
DT = 2.5 and 25 for Ra = 106, the flow and thermal fields
change as a function of time so that isotherms and stream-
lines shown in Fig. 2(c) and (d) are time-averaged fields.
When DT = 2.5 for Ra = 106, both effects of convection
caused by the temperature difference between the hot and
cold walls and by heat generation from the conducting
body have the similar role in the fluid flow and heat trans-
fer in the enclosure. When DT = 2.5 for Ra = 106, the time-
averaged streamlines and isotherms show top–bottom and
left–right reflectional symmetries unlike to the cases of
Ra 6 105. When DT = 25 for Ra = 106, the effect of con-
vection caused by the heat generation becomes more dom-
inant than that by the hot and cold wall temperature
difference. As a result, when DT = 25 for Ra = 106, iso-
therms ascend upward, a pair of vortices is formed in the
enclosure with additional secondary and tertiary vortices,
and the time-averaged streamlines and isotherms show a
left–right reflectional symmetry, similar to the case of
Ra = 105.

3.1.5. Nusselt numbers at the hot and bottom walls

When DT = 0.0 and 0.25, the fluid flow and thermal
fields reach the final steady state for different values of
Ra = 103–106after they undergo the initial transients. The
steady values of surface-averaged Nusselt number at the
hot bottom wall, Nuh, is the same as those at the cold top
wall, Nuc, for Ra = 103–106, because isotherms show the
diagonally symmetric shape and their surface-averaged
thermal gradients at the top and bottom walls are the same
as shown in Fig. 2(a). When DT increases to 0.25, the effect
of free convection caused by the temperature difference
between the hot and cold walls on the fluid flow and heat
transfer in the enclosure is larger than that caused by heat
generation from the conducting body like the case of
DT = 0.0. As a result, the steady values of surface-averaged
Nusselt number at the hot and cold walls for DT = 0.25 are
almost the same as those for DT = 0.0.

When DT increases to 2.5, the thermal gradient on the
cold wall and Nuc become larger than those at DT = 0.25
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for Ra = 103–106, because the effect of rising thermal
plume caused by the heat generation becomes larger. How-
ever, for the case of Nuh, the heat generation gives the
opposite effect on the bottom hot wall. As a result, when
Ra = 103 for DT = 2.5, the value of Nuh at the steady state
has a negative value, because the temperature of fluid
around the bottom hot wall is larger than the hot wall tem-
perature due to large heat transfer from the conducting
body. When the Rayleigh number increases for DT = 2.5,
the effect of free convection caused by the temperature dif-
ference increases with increasing Rayleigh number and the
temperature of fluid close to the bottom hot wall becomes
smaller than the hot wall temperature. Thus Nuh has posi-
tive values at Ra = 104, 105 and 106 and increases with
increasing Rayleigh number.

When DT increases further to 25, the amount of heat
generation is very large and the fluid flow and temperature
fields are governed by heat generation form the conducting
body. Thus Nuc for DT = 25 is larger than that for
DT = 2.5. Nuh for DT = 25 has negative values for all Ray-
leigh numbers considered in the present study and increases
with increasing Rayleigh number due to increasing effect of
free convection caused by the top and bottom wall temper-
ature difference. When Ra = 106 for DT = 25, the values of
Nuh are close to 0, which means that heat from the conduct-
Fig. 4. Power spectrum of the surface-averaged Nusselt number at the hot
ing body is hardly transferred to the hot bottom wall but
easily transferred to the cold wall.

When Ra = 106 for the case of DT = 2.5 and Ra = 105

and 106 for DT = 25, the fluid flow and temperature fields
in the enclosure are time-dependent and as a result Nuh and
Nuc have a chaotic pattern as a function of time with large
amplitude. The amplitude and frequency of time-depen-
dent surface-averaged Nusselt number are deeply related
with the unsteady-motioned shape and location of second-
ary vortex. It can be well explained by observation of
detailed motion of instantaneous velocity and thermal
fields. When we compare streamlines and isotherms for
the case with large heat generation with those for the case
with no or small heat generation at the same Rayleigh
numbers, we can recognize that heat generation makes
the fluid flow and thermal fields in the enclosure unstable.

Fig. 4 shows the power spectrums of surface-averaged
Nusselt number for DT = 2.5 and 25 at Ra = 106. When
DT = 2.5 for Ra = 106, the primary frequency of surface-
averaged Nusselt number at both hot and cold walls is
about 130. However, when DT is increased to 25 for
Ra = 106, the power spectrum of Nuh is quite different from
that of Nuc. The magnitude and primary frequency of
power spectrum of Nuc are much larger than those of
Nuc. The primary frequency of Nuc is about 148. This
and cold walls for different values of DT when k = 0.1 and Ra = 106.
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dominant peak value of frequency is corresponding to the
phenomenon in which the primary roll cell circulates
around the interior body with clockwise and counter-clock-
wise direction, respectively, so that it changes its direction
in reverse repeatedly. Since there is not a primary roll cell
circulating around the body but the hot plume which is
generated from the body oscillates with its corresponding
power spectra. The outstanding frequency on the cold wall
has a relation to continuous gross and reduction of second-
ary vortices at both bottom corners. In fact, since the oscil-
lating plume from the body makes an influence to the
downwelling flow moving down through the enclosure next
to the body, the periodic change of the shape of secondary
vortices is deeply affected by the frequency of hot plume
from the body.

3.2. k = 1

Fig. 5 shows the time-averaged isotherms and stream-
lines for different values of DT and Rayleigh numbers when
Fig. 5. Time-averaged isotherms and streamlines for diffe
k = 1. When k = 1, the thermal conductivity of fluid is
equal to that of conducting body. As the thermal conduc-
tivity ratio increases from 0.1 to 1, the thermal resistance of
conducting body decreases and heat transfer from the con-
ducting body to the surrounding fluid increases with
increasing thermal conductivity ratio. Thus, the values of
temperature in the conducting body and in the fluid around
the conducting body for k = 1 are much smaller than those
for k = 0.1, as shown in Figs. 2 and 5.

When we compare the results for the distribution of iso-
therms and streamlines for the case of k = 1 with those for
k = 0.1, the distribution of isotherms and streamlines for
k = 1 is generally similar to that for k = 0.1 for all the Ray-
leigh numbers considered, except some slight differences
around the conducting body due to the difference in the
thermal conductivity ratio. However, when DT = 0.0 and
0.25 for Ra = 103, we can observe the striking differences
in the distribution of isotherms when we compare iso-
therms for k = 1 with those for k = 0.1. When Ra = 103,
heat transfer in the enclosure is dominated by conduction.
rent values of DT and Rayleigh number when k = 1.
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Because heat generation from the conducting body is
absent or very small when DT = 0.0 and 0.25 for
Ra = 103, the conduction heat transfer in the enclosure is
mainly governed by the temperature difference between
the top and cold walls, the distribution of isotherms is sen-
sitive to the variation of thermal conductivity ratio, and as
a result isotherms for k = 1 are different from those for
k = 0.1. When Ra = 103, the distribution of isotherms for
k = 1 is almost parallel in the horizontal direction and
Fig. 6. Surface-averaged Nusselt number at the bottom hot and top cold walls
k = 1.
shows nearly equi-spaced level in the vertical direction,
whereas isotherms for k = 0.1 move toward the conducting
body at the center and shows equi-spaced level at the left
and right vertical walls.

Another big difference is observed when DT = 25 and
Ra = 105 for different values of k = 0.1 and 1. When
k = 1 with DT = 25 and Ra = 105, the fluid flow and tem-
perature fields are not time-dependent and isotherms and
streamlines shown in Fig. 5(d) show the fluid flow and
as a function of time for different values of DT and Rayleigh number when
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temperature fields at the steady state. However, when
k = 0.1 with DT = 25 and Ra = 105, the fluid flow and tem-
perature fields are time-dependent and isotherms and
streamlines in Fig. 2(d) show the time-averaged fluid flow
and temperature fields. Because thermal gradients at the
interface between the fluid and conducting body are the
same for k = 1, this makes the fluid flow and thermal fields
for k = 1 more stable than those k = 0.1, like the pure Ray-
leigh–Bénard convection.
Fig. 6 (con
Fig. 6 shows the surface-averaged Nusselt number at hot
bottom and cold top walls as a function of time for differ-
ent values of DT and Ra when k = 1. Similar to the case of
k = 0.1, the surface-averaged Nusselt number for k = 1
increases with increasing Ra. As shown in Figs. 5(a) and
(b) and 6(a) and (b), when DT = 0.0 and 0.25, the fluid flow
and heat transfer characteristics are governed mainly by
the free convection caused by the temperature difference
between the hot and cold walls and the effect of heat
tinued)



Fig. 7. Power spectrum of the surface-averaged Nusselt number at the hot and cold walls for different values of DT when k = 1 and Ra = 106.
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generation from the conducting body is not important. The
time history of Nuh and Nuc for DT = 0.25 is generally sim-
ilar to that for DT = 0.0. When DT = 0.0 and 0.25 for
k = 1, the surface-averaged Nusselt numbers for all Ray-
leigh numbers of Ra = 103–106 reach the steady state after
the initial transient state, as shown in Figs. 6(a) and (b).
When DT increases to 25, the effect of heat generation
becomes very large and Nuh has negative values at some
Rayleigh numbers. When Ra = 103–105 for DT = 2.5 and
Ra = 103–104 for DT = 25, the surface-averaged Nusselt
number for k = 1 also reaches the steady state as explained.
However, when Ra = 105 for DT = 25 and Ra = 106 for
both DT = 2.5 and 25, the surface-averaged Nusselt num-
bers for k = 1 are time-dependent and oscillates as a func-
tion of time, similar to the case of k = 0.1. Especially for
Ra = 106 with DT = 25, an amplitude of surface-averaged
Nusselt number of hot and cold wall looks quite different
each other. The amplitude of surface-averaged Nusselt
number at the top cold wall is much larger than that at
the bottom hot wall. The presence of a conducting body
makes the flow in the upper and lower region different.
The flow in the upper half enclosure becomes more vigor-
ous due to heat transfer from the heat-generating conduct-
ing body, whereas the flow in the lower half enclosure looks
stable and as a result the surface-averaged Nusselt number
becomes smaller. The power spectrum for the time-depen-
dent surface-averaged Nusselt number at both hot and cold
walls for DT = 2.5 and DT = 25 when Ra = 106 and k = 1
is shown in Fig. 7. The bandwidth of frequency affecting
the flow pattern is similar to those for k = 0.1. It is noted
that these two cases of DT = 2.5 and DT = 25 at
Ra = 106 show the same flow motion so that the time his-
tory of surface-averaged Nusselt number and its power
spectrum look similar each other. However, there is a dif-
ference in the scale of power spectrum energy. When
k = 0.1 in which the body acts like adiabatic, the flow is
more accelerated and circulates around the conducting
body with higher intensity. The faster flow goes, the more
frequent and stronger thermal flow is. That is why the spec-
trum energy for k = 0.1 is larger than that for k = 1.

3.3. k = 50

Fig. 8 shows the time-averaged isotherms and stream-
lines for different values of DT and Rayleigh numbers when
k = 50. When k = 50, the thermal conductivity of fluid is
50 times less than solid thermal conductivity. Since the
thermal resistance of conducting body due to conduction
is much less than that of surrounding fluid due to convec-
tion, the temperature within the conducting body becomes



Fig. 8. Time-averaged isotherms and streamlines for different values of DT and Rayleigh number when k = 50.
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almost constant. The maximum temperature for k = 50 is
lower than that for k = 0.1 and 1. However the difference
in the maximum temperature between k = 1 and k = 50 is
not large, compared to the large difference in the maximum
temperature between k = 0.1 and k = 1.

When k = 50, the general trend in the change of iso-
therms and streamlines as a function of Ra and DT is sim-
ilar to that for k = 0.1 and k = 1. However, we can observe
some differences for certain Rayleigh numbers and DT.
When DT = 0 and 0.25 for Ra = 103, the distribution of
isotherms depends on the thermal conductivity ratio and
the distribution of isotherms for three different values of
k = 0.1, 1 and 50 shows different distribution. The iso-
therms at the center for k = 50 move away from the
conducting body, which is opposite to the distribution of
isotherms for k = 0.1. Another difference for different
values of k is observed when Ra = 104 and 105 with
DT = 25. When k = 50, a pair of secondary vortices that
are not observed for k = 0.1 and 1 is formed in between
a pair of main vortices over the surface of conducting
body.
Fig. 9 shows the surface-averaged Nusselt numbers at hot
bottom and cold top walls as a function of time for different
values of DT and Ra when k = 50. Fig. 10 shows the power
spectrum for the time-dependent surface-averaged Nusselt
number at both hot and cold walls for DT = 2.5 and
DT = 25 when Ra = 106 and k = 50. The surface-averaged
Nusselt numbers and their power spectrum for k = 50 are
generally similar to those for k = 0.1 and 1. When
DT = 2.5 and 25 for Ra = 105, Nuh and Nuc for k = 0.1 and
50 are time-dependent, whereas those for k = 1 reach the
steady state. In Fig. 10(a), we have chosen the only chaotic
region of time history of surface-averaged Nusselt number
(after 3 in time). Compared with previous two cases
(k = 0.1 and 1), the bandwidth of dominant frequency of
power spectrum is small and less than 100. The flow pattern
and its time-averaged field look like those for k = 0.1 and 1
but the power spectrum does not. The flow for k = 50 is quite
more chaotic and the downwelling plume is stronger than the
others. That is why the time-history of surface-averaged
Nusselt number shows the larger amplitude of higher peak
and lower peak and consequently different power spectrum.



Fig. 9. Surface-averaged Nusselt number at the bottom hot and top cold walls as a function of time for different values of DT and Rayleigh number when
k = 50.
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3.4. Time- and surface-averaged Nusselt number

Fig. 11 shows the time- and surface-averaged Nusselt
number at the hot bottom and cold top walls, hNuhi and
hNuci, as a function of Rayleigh number for different k

and DT. When the Rayleigh number increases, the magni-
tude of velocity increases and as a result hNuhi and hNuci
increase.

When DT = 0, 0.25 and 2.5 for Ra = 103, heat transfer
in the enclosure is governed by the conduction mode
caused by the temperature difference between the bottom
hot and top cold walls. Thus hNuhi and hNuci for DT = 0,
0.25 and 2.5 at Ra = 103 increase with increasing k from
0.1 to 50 due to the distribution of isotherms shown in
Figs. 2, 5 and 8. When DT increases to 25 for Ra = 103,
heat transfer is governed by heat generation from the
conducting body under the conduction heat transfer mode.
As a result hNuhi and hNuci for different k values of 0.1, 1
and 50 have the almost same value when DT = 25 for
Ra = 103.



Fig. 9 (continued)
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When Ra = 104, both heat generation from the conduct-
ing body and temperature difference between the bottom
and top walls have similar effects on the distribution of
fluid flow and temperature fields. Thus, when DT = 0,
0.25 and 2.5 for Ra = 104, hNuhi and hNuci decrease
with increasing k from 0.1 to 50, which is opposite to
the case of Ra = 103. When DT = 25 for Ra = 104, hNuhi
and hNuci also decrease with increasing k, unlike to the
case of Ra = 103 which has almost same values for
different k.
When the Rayleigh number increases to 105 and 106, the
effect of temperature difference between two walls becomes
larger. Thus, when DT = 0, 0.25 and 2.5 for Ra = 105 and
106, isotherms for different k have the similar distribution
and their corresponding hNuhi and hNuci have the almost
same values, due to the dominant effects of wall tempera-
ture difference on the natural convection in the enclosure.
When DT increases to 25 for Ra = 105 and 106, we can
observe some differences in hNuhi and hNuci for different
values of k, due to dominant effects of heat generation.



Fig. 10. Power spectrum of the surface-averaged Nusselt number at the hot and cold walls for different values of DT and Ra when k = 50.
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Fig. 11. Time- and surface-averaged Nusselt number at the hot and cold walls as a function of Rayleigh number for different DT and k.
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When DT = 25 for different values of thermal conductiv-
ity ratio, hNuhi has negative values for Ra = 103, 104 and
105, meaning that the temperature of fluid close to the bot-
tom wall is higher than the bottom hot wall temperature
and heat is transferred from the fluid to the bottom hot
wall, due to large heat transfer from the heat generating
conducting body.

4. Conclusion

We have investigated natural convection in horizontal
layer of fluid with heat-generating conducting body in the
interior, using an accurate and efficient Chebyshev spectral
collocation approach. A multi-domain methodology was
employed to address the geometric complexity introduced
by the internal body. We make a detailed analysis for the
distribution of streamlines, isotherms and Nusselt number
as a function of time in order to investigate the effect of
unsteadiness and the presence of heat-generating conduct-
ing body with different thermal conductivity ratios of
k = 0.1, 1 and 50 on the fluid flow and heat transfer in
the horizontal enclosure for the Rayleigh numbers in the
range of 103

6 Ra 6 106.
When DT = 0 and 0.25, the effect of heat generation

from the conducting body is small and the fluid flow and
temperature fields in the enclosure are mainly governed
by the temperature difference between the bottom hot
and top cold walls. When DT = 0 and 0.25, streamines
and isotherms for all Rayleigh numbers in the range of
103
6 Ra 6 106 are not time-dependent and the corre-

sponding Nusselt numbers at the walls reach the steady
state after some initial transients. However, because the
effects of heat generation on the fluid flow and heat transfer
become larger if DT increases to 2.5 and 25 and heat gen-
eration makes the fluid flow and temperature fields more
unstable, streamlines and isotherms for the high Rayleigh
numbers of Ra = 105 and 106 become time-dependent
and Nuh and Nuc have a chaotic pattern as a function of
time with large amplitude.

The distribution of isotherms depends on the thermal
conductivity ratio when DT = 0, 0.25 and 2.5 because the
effect of conduction on heat transfer in the enclosure is lar-
ger than convection when Ra = 103 and 104. As a result,
with increasing k, hNuhi and hNuci for Ra = 103 increase,
whereas those at Ra = 104 decreases. Because the effect of
convection on heat transfer in the enclosure is larger than
conduction when Ra = 105 and 106, the distribution of iso-
therms is similar and as a result hNuhi and hNuci at DT = 0,
0.25 and 2.5 have the almost same value for different k val-
ues. Because heat transfer is governed by heat generation
from the conducting body when DT = 25, the distribution
of isotherms do not depend on the thermal conductivity
ratio and hNuhi and hNuci have almost same value for
103
6 Ra 6 106.
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